# Deviation from the Orbital Symmetry Rules. 1,2-Hydrogen Addition 

Shogo Sakai<br>Department of Information Systems Engineering, Faculty of Engineering, Osaka Sangyo University, Daito 574, Japan

Received: June 25, 1996; In Final Form: October 30, $1996^{\otimes}$


#### Abstract

The reaction mechanisms of 1,2-hydrogen addition to the $\pi$ bond of $\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}(\mathrm{X}$ or $\mathrm{Y}=\mathrm{C}, \mathrm{Si}, \mathrm{B}, \mathrm{N}, \mathrm{Al}$, and P) type molecules were studied by ab initio molecular orbital methods. For reactions $\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$, least-motion ( $C_{2 v}$ symmetry) and reduced symmetry pathways ( $C_{s}$ or $C_{1}$ symmetries) were calculated. The reactions on these pathways were classified into two types (a concerted and a polarized mechanism) by the CI/LMO/CAS analysis. The reactions for both systems along the $C_{2 v}$ symmetry path belongs to the concerted mechanism (biradical type). On the $C_{s}$ symmetry path, the reaction of ethylene also belongs to the concerted mechanism; the reaction of disilene belongs to the polarized mechanism. The energy barrier heights on the $C_{s}$ (or $C_{1}$ ) symmetry pathway were reduced $17 \%$ for ethylene system and $22 \%$ for disilene system from those on the $C_{2 v}$ symmetry pathways by the MP2/CAS $(6,6)$ method. The other reactions -X not equal to $\mathrm{Y}-$ were also classified into the polarized mechanisms by the CI/LMO/CAS analysis. The classification was explained on the basis of the triplet excitation and polarization energies of the $\pi$ bond in $\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}$ model molecules.


## I. Introduction

It is well-known that the orbital symmetry rules ${ }^{1}$ are very useful for the decision of allowance and forbiddance of chemical reactions. One of the typical application examples of the rules is the addition of molecular hydrogen to ethylene via a fourcenter transition state, which is a prototypical reaction for molecule additions to unsaturated hydrocarbons.

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3} \tag{1}
\end{equation*}
$$

While the least-motion pathway with $C_{2 v}$ symmetry for reaction 1 is symmetry forbidden, the reduced symmetry ( $C_{s}$ or $C_{1}$ ) pathway is symmetry allowed from the precise treatment of the rules. The activation barrier heights on these reaction pathways could not be estimated from the rules. Gordon and co-workers ${ }^{2}$ calculated the activation energy barrier height (130 $\mathrm{kcal} / \mathrm{mol}$ ) for 1,2-hydrogen elimination from ethane with reduced symmetry ( $C_{s}$ symmetry) by ab initio MO methods. The energy barrier ( $113.4 \mathrm{kcal} / \mathrm{mol}$ ) for 1,2-hydrogen addition into ethylene with the $C_{s}$ symmetry was also calculated by Siria and co-workers. ${ }^{3}$ On the other hand, the reaction of $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}+$ $\mathrm{H}_{2}$ is also symmetry forbidden on the least-motion pathway and symmetry allowed on the reduced symmetry pathway. The potential energy surfaces for 1,2-hydrogen elimination processes for disilane were calculated by Gordon and co-workers. ${ }^{4}$ They estimated the activation energy barrier of $86 \mathrm{kcal} / \mathrm{mol}$ on the reduced symmetry pathway by ab initio MO methods. However, the difference of energy barrier heights on the least-motion ( $C_{2 v}$ symmetry) and the reduced symmetry pathways is, to our knowledge, unknown.

To clarify the influence of symmetry on the activation energy barriers for reactions, the reaction paths for 1,2-hydrogen addition to the $\pi$ bond of seven $\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}$ molecules were studied in the view of symmetry and asymmetry (reduced symmetry).

## II. Theoretical Approach

The basis set used here was the split-valence plus polarization 6-31G(d,p) set. ${ }^{5}$ All equilibrium and transition state geometries

[^0]were determined with analytically calculated energy gradients ${ }^{6}$ at a complete active space (CAS) self-consistent-field (SCF) method $^{7}$ and the second-order $\mathrm{M} \phi$ ller-Plesset perturbation (MP2) level ${ }^{8}$ of theory with the Hartree-Fock wave functions using the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. For the CASSCF calculation, two types of active spaces were chosen. One is four active spaces corresponding to the $\pi$ and $\pi^{*}$ orbitals of $\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}$ and the $\sigma$ and $\sigma^{*}$ orbitals of the active hydrogen molecule (CAS$(4,4))$. The other is the active spaces of $\operatorname{CAS}(4,4)$ plus the $\sigma$ and $\sigma^{*}$ orbitals of X-Y bond (CAS(6,6)). For both of the CASSCF calculations, all configurations in the active spaces were generated. The force constant matrix and thereby the vibrational frequencies were calculated with analytically calculated energy second derivatives. ${ }^{9}$ Additional calculations were performed to obtain improved energy comparisons-the calculations with the CASSCF-optimized structures with electron correlation incorporated through the multiconfigurational secondorder M $\phi$ ller-Plesset perturbation theories $[\mathrm{MP} 2 / \mathrm{CAS}]^{10}$ and the calculations with the MP2-optimized structures with electron correlation incorporated through the fourth-order M $\phi 1$ ler-Plesset perturbation theories [MP4(SDTQ)/MP2]. The intrinsic reaction coordinate ${ }^{11}$ (IRC) was followed from the transition state toward both reactants and products.

To interpret reaction mechanisms along the reaction pathway, a configuration interaction (CI)/localized molecular orbital (LMO)/CAS analysis was carried out following a method described elsewhere ${ }^{12,13}$ with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. (1) The RHF, single-determinant wave function is calculated and the MOs that correspond most closely to the $\sigma$ and $\sigma^{*}$ orbitals of the active hydrogen part and the $\pi$ and $\pi^{*}$ orbitals of the $\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}$ part are identified. A four-orbital, four-electron CASSCF calculation (CAS(4,4)) is then performed to obtain a starting set of orbitals for the localization procedure. (2) After carrying out the CASSCF procedure, the CASSCF-optimized orbitals are localized. The four CASSCF-optimized MOs are subjected to the Boys localization procedure. ${ }^{14}$ The calculated localized orbitals are very atomic in nature. The localized MOs for the transition state with $C_{2 v}$ symmetry in reaction 1 are plotted in Figure 1. (3) By using the localized MOs as a basis, a $20 \times 20 \mathrm{CI}$ is used to generate electronic structures and their


Figure 1. The localized CASSCF-optimized MOs for the transition state with $C_{2 v}$ symmetry for $\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ reaction are plotted for (a) H (1s), (b) $\mathrm{C}\left(2 \mathrm{p}_{\pi}\right)$, (c) $\mathrm{C}\left(2 \mathrm{p}_{\pi}\right)$, and (d) $\mathrm{H}(1 \mathrm{~s})$.

12200>


|1111>

11012>

10220>

12101>


12011>

18
 11021>
11201>
12110>
 11111>
 12020>

10121>
10211>

10022>

Figure 2. Electronic configurations from $20 \times 20 \mathrm{CI}$.
relative weight in the ground state wave function. While a little tail remained in the obtained localized MOs as shown in Figure 1, we think that the main configurations can be used for the characterization of reaction. The 20 spin-adapted configurations generated are shown schematically in Figure 2.

The CI/LMO/CAS analysis calculations were performed with the GAMESS program. ${ }^{15}$ The other calculations were carried out with the GAUSSIAN94 program. ${ }^{16}$

## III. Results and Discussion

The structure shapes of stationary points for the treated reactions $\left(\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}+\mathrm{H}_{2}:(\mathrm{X}, \mathrm{Y})=(\mathrm{C}, \mathrm{C}),(\mathrm{Si}, \mathrm{Si}),(\mathrm{C}, \mathrm{Si})\right.$, ( $\mathrm{B}, \mathrm{N}$ ), ( $\mathrm{B}, \mathrm{P}$ ), ( $\mathrm{Al}, \mathrm{N}$ ), and ( $\mathrm{Al}, \mathrm{P})$ ) are illustrated in Figure 3. Their geometry parameters are listed in Table 1. The total energies for their spaces and the relative energies are summarized in Tables 2 and 3, respectively.
A. $\mathbf{H}_{\mathbf{2}} \mathbf{X}=\mathbf{X H}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \rightarrow \mathbf{H}_{3} \mathbf{X}-\mathbf{X H}_{\mathbf{3}}$ Reactions. First of all, 1,2-hydrogen addition into ethylene and disilene were treated. The least-motion paths for these reactions have $C_{2 v}$ symmetry, which are the symmetry forbidden reactions from the orbital symmetry rules. However the reaction paths with $C_{s}$ or $C_{1}$ symmetry are the symmetry allowed reactions. The transition states $\left(\mathrm{TS}\left(C_{2 v}\right)\right.$ and $\left.\mathrm{TS}\left(C_{s}\right)\right)$ with $C_{2 v}$ and $C_{s}$ symmetries were calculated for the reactions $\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$. For both systems of ethylene and disilene, each $\operatorname{TS}\left(C_{2 v}\right)$ has two negative eigenvalues for their force constant matrix by the CAS/6-31G(d,p) calculation methods (CAS $(4,4)$ and CAS( 6,6$)$ ). The eigenvector of one negative eigenvalue corresponds to the reaction coordinate with $a_{1}$ symmetry for both systems. The other eigenvalue is $969 \mathrm{~cm}^{-1}$ ( $b_{2}$ symmetry) for the ethylene system and $338 \mathrm{~cm}^{-1}$ ( $a_{2}$ symmetry) for the disilene system by the $\operatorname{CAS}(6,6) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ method. Consequently their true



$\operatorname{TS}\left(\mathrm{C}_{\mathrm{s}}\right)$


PRODUCTS

Figure 3. The structure shapes of stationary points.
transition states for the reactions of ethylene and disilene have $C_{s}$ and $C_{1}$ symmetries, respectively. For the transition state of the disilene system with $C_{1}$ symmetry, the dihedral angle of $\mathrm{H}^{*}-\mathrm{M}-\mathrm{Si}-\mathrm{Si}$ (M: middle point of active hydrogen) is only $12^{\circ}$ by the CAS $(6,6)$ level.

For the reaction $\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$, the difference between the activation energy barriers at the transition states with $C_{2 v}$ and $C_{s}$ symmetries is about $9 \mathrm{kcal} / \mathrm{mol}$ by the $\mathrm{CAS}(6,6)$ method and $17 \mathrm{kcal} / \mathrm{mol}$ by the MP2/CAS $(6,6)$ methods. This energy difference for the ethylene system is only $8 \%$ by the $\operatorname{CAS}(6,6)$ / $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ calculation levels, and $17 \%$ by the MP2/CAS $(6,6)$ / $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ levels. On the other hand, for the reaction $\mathrm{H}_{2}+$ $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$, the difference between the energy barrier heights at the transition states with $C_{2 v}$ and $C_{s}$ symmetries is $2.8 \mathrm{kcal} /$ mol by the $\operatorname{CAS}(6,6) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level and $13.2 \mathrm{kcal} / \mathrm{mol}$ by the MP2/CAS $(6,6) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ levels. The energy difference is only $5 \%$ by the $\operatorname{CAS}(6,6) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ levels and $22 \%$ by the MP2/CAS $(6,6) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ levels. At the transition states with $C_{s}$ and $C_{1}$ symmetries for disilene system, the difference of the activation energy barriers is only $0.1 \mathrm{kcal} / \mathrm{mol}$ by the $\operatorname{CAS}(6,6)$ method. This small energy difference corresponds to the geometry difference at their transition states. As the results indicate, the reduced activation energies for the avoidance from the symmetry forbiddance $\left(C_{2 v} \rightarrow C_{s}\right.$ or $\left.C_{1}\right)$ are small (not drastic).

In order to electronically study mechanisms for the above two reaction pathways ( $C_{2 v}$ and $C_{s}$ ), the reactions of the ethylene and disilene systems were analyzed along the IRC paths by the CI/LMO/CAS method. The relative weights of the electronic configurations at the points of the reactant side ( $\mathrm{RX}=$ negative values), the transition state ( $\mathrm{RX}=0.0$ ), and the product side ( $\mathrm{RX}=$ positive values) for each system are summarized in

TABLE 1: Some Geometry Parameters of Stationary Points for the Treated Reactions by the $\operatorname{CAS}(6,6)$ and $\operatorname{CAS}(4,4)$ Methods ${ }^{a}$

| stationary points |  | $\mathrm{H}^{*}-\mathrm{H}^{*} b$ | X-Y | $\mathrm{H}^{*}-\mathrm{X}$ | $\mathrm{H}^{*}-\mathrm{Y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X | Y |  |  |  |  |
| Reactant ( $\left.\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}+\mathrm{H}_{2}\right)$ |  |  |  |  |  |
| C | C | 0.753 | 1.353 (1.338) |  |  |
| Si | Si | 0.753 | 2.236 (2.233) |  |  |
| Si | C | 0.753 | 1.740 (1.735) |  |  |
| B | N | 0.753 | 1.407 (1.389) |  |  |
| B | P | 0.753 | 1.883 (1.899) |  |  |
| Al | N | 0.753 | 1.790 (1.771) |  |  |
| A1 | P | 0.753 | 2.337 (2.346) |  |  |
| $\mathrm{TS}\left(C_{2 v}\right.$ Symmetry) |  |  |  |  |  |
| C | C | 1.296 (1.268) | 1.466 (1.448) | 1.749 (1.743) | 1.749 (1.743) |
| Si | Si | 0.890 (0.903) | 2.454 (2.408) | 2.094 (2.548) | 2.094 (2.548) |
| $\mathrm{TS}\left(C_{s}\right.$ Symmetry) |  |  |  |  |  |
| C | C | 1.458 (1.472) | 1.490 (1.466) | 1.489 (1.478) | 1.700 (1.693) |
| Si | Si | 0.968 (0.961) | 2.425 (2.383) | 1.699 (1.701) | 2.006 (1.994) |
| Si | C | 1.040 (1.059) | 1.767 (1.747) | 1.803 (1.838) | 1.772 (1.810) |
| B | N | 0.986 (1.004) | 1.605 (1.574) | 1.381 (1.363) | 1.406 (1.409) |
| B | P | 1.088 (1.133) | 2.242 (2.104) | 1.287 (1.278) | 1.769 (1.783) |
| Al | N | 0.994 (1.026) | 1.941 (1.912) | 1.414 (1.409) | 1.826 (1.837) |
| Al | P | 1.122 (1.111) | 2.539 (2.538) | 1.732 (1.728) | 1.834 (1.838) |
| $\mathrm{TS}\left(C_{1}\right.$ Symmetry) |  |  |  |  |  |
| Si | Si | 0.936 (0.950) | 2.396 (2.375) | 1.716 (1.682) | 2.031 (1.973) |
| B | P | 1.115 | 2.228 | 1.280 | 1.792 |
| Products $\left(\mathrm{H}_{3} \mathrm{X}-\mathrm{YH}_{3}\right)$ |  |  |  |  |  |
| C | C |  | 1.537 | 1.088 | 1.088 |
| Si | Si |  | 2.350 | 1.477 | 1.477 |
| Si | C |  | 1.891 | 1.477 | 1.088 |
| B | N |  | 1.689 | 1.202 | 1.014 |
| B | P |  | 1.982 | 1.198 | 1.396 |
| Al | N |  | 2.104 | 1.595 | 1.015 |
| Al | P |  | 2.587 | 1.589 | 1.397 |

${ }^{a}$ The values in parentheses were calculated by the CAS $(4,4)$ method; units are angstroms. ${ }^{b} \mathrm{H}^{*}$ means active hydrogen atom.

Tables 4-7. For the reaction of $\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ with $C_{2 v}$ symmetry (Table 4), the weight of configuration 11 decreases from the reactant side to the product side and the weight of configuration 9 increases. That is to say, configuration 11 could be described as the interaction between singlet hydrogen and singlet ethylene coupled to give a singlet, and configuration 9 could be described as the interaction between triplet hydrogen and triplet ethylene coupled to give a singlet. From the results, this mechanism can be characterized by the transformation between the singlet and the triplet spin states for each $\pi$ bond and $\mathrm{H}-\mathrm{H} \sigma$ bond. Of course, the total spin state for the system is kept in the singlet state. We call this mechanism a concerted reaction. The variation in the weights of the configuration (Table 5) along the IRC path with $C_{s}$ symmetry for $\mathrm{H}_{2}+$ $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ is similar to that for the reaction path with $C_{2 v}$ symmetry. Thus, both mechanisms on the $C_{2 v}$ and $C_{s}$ paths are the concerted reaction. For the reaction of $\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$ with $C_{2 v}$ symmetry (Table 6), the weights of configuration 11 decreases from the reactant side to the product side and the weight of configuration 9 increases; it is the same pattern as that of $\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$. Accordingly, this mechanism is also the concerted reaction. For the reaction with $C_{s}$ symmetry (Table 7), the weight of configuration 9 increases from the reactant side to the product side. On the other hand, the weight of configuration 11 does not change much such as those in the above reactions (the concerted reaction). The weight of configuration 16 decreases along the IRC path from the reactant side to the product side. Configuration 16 could be described by the polarization of the $\pi$ bond. Consequently, we call this mechanism a polarized reaction. Thus, the reaction mechanisms

TABLE 2: Total Energies (hartree) for Various Species

| methods | CAS(6,6) | MP2/CAS $(6,6)$ | CAS(4,4) | MP2/CAS(4,4) | MP4/MP2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reactants |  |  |  |  |  |
| $\mathrm{H}-\mathrm{H}$ | -1.149 64 | -1.16177 | -1.149 64 | $-1.16177$ | -1.164 56 |
| $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ | -78.093 27 | -78.327 17 | -78.067 34 | -78.320 41 | -78.35379 |
| $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$ | -580.123 39 | -580.300 71 | -580.110 83 | -580.294 76 | -580.31478 |
| $\mathrm{H}_{2} \mathrm{Si}=\mathrm{CH}_{2}$ | -329.095 05 | -329.305 43 | -329.071 07 | -329.294 42 | -329.32125 |
| $\mathrm{H}_{2} \mathrm{~B}=\mathrm{NH}_{2}$ | -81.54134 | -81.770 67 | -81.513 58 | -81.76788 | -81.796 89 |
| $\mathrm{H}_{2} \mathrm{~B}=\mathrm{PH}_{2}$ | -367.736 40 | -367.946 49 | -367.721 74 | -367.934 03 | -367.955 74 |
| $\mathrm{H}_{2} \mathrm{Al}=\mathrm{NH}_{2}$ | -298.74768 | -298.962 34 | -298.719 35 | -298.958 90 | -298.978 53 |
| $\mathrm{H}_{2} \mathrm{Al}=\mathrm{PH}_{2}$ | -584.968 65 | -585.15276 | -584.95612 | -565.145 87 | -585.163 97 |
| Transition States |  |  |  |  |  |
| $\mathrm{H}_{2} \mathrm{CHHCH}_{2}\left(C_{2 v}\right)$ | -79.068 30 | -79.302 19 | -79.046 28 | -79.306 76 |  |
| $\mathrm{H}_{2} \mathrm{CHHCH}_{2}\left(C_{s}\right)$ | -79.082 78 | -79.329 62 | -79.058 56 | -79.331 09 | -79.374 37 |
| $\mathrm{H}_{2} \mathrm{SiHHSiH}_{2}\left(C_{2 v}\right)$ | -581.186 40 | -581.366 67 | -581.173 36 | -581.368 83 |  |
| $\mathrm{H}_{2} \mathrm{SiHHSiH}_{2}\left(C_{s}\right)$ | -581.190 77 | -581.38782 | -581.174 89 | -581.389 25 | -581.416 24 |
| $\mathrm{H}_{2} \mathrm{SiHHSiH}_{2}\left(C_{1}\right)$ | -581.19103 | -581.38780 | -581.175 59 | -581.395 81 | -581.416 41 |
| $\mathrm{H}_{2} \mathrm{SiHHCH}_{2}\left(C_{s}\right)$ | -330.150 44 | -330.381 66 | -330.127 25 | -330.375 43 | -330.406 73 |
| $\mathrm{H}_{2} \mathrm{BHHNH}_{2}\left(C_{s}\right)$ | -82.599 71 | -82.855 62 | -82.572 64 | -82.859 84 | -82.892 84 |
| $\mathrm{H}_{2} \mathrm{BHHPH}_{2}\left(C_{s}\right)$ | -368.832 23 | -369.053 02 | -368.826 38 | -369.064 26 | -369.090 62 |
| $\mathrm{H}_{2} \mathrm{BHHPH}_{2}\left(C_{1}\right)$ | -368.833 56 | -369.060 94 |  |  | -369.092 11 |
| $\mathrm{H}_{2} \mathrm{AlHHNH}_{2}\left(C_{s}\right)$ | -299.843 73 | -300.082 51 | -299.816 71 | $-300.08180$ | -300.104 19 |
| $\mathrm{H}_{2} \mathrm{AlHHPH}_{2}\left(C_{s}\right)$ | -586.055 83 | -586.248 36 | -586.044 03 | -586.25753 | -586.27629 |
| Products |  |  |  |  |  |
| $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$ |  |  |  |  | -79.584 12 |
| $\mathrm{H}_{3} \mathrm{Si}-\mathrm{SiH}_{3}$ |  |  |  |  | -581.559 39 |
| $\mathrm{H}_{3} \mathrm{Si}-\mathrm{CH}_{3}$ |  |  |  |  | -330.576 45 |
| $\mathrm{H}_{3} \mathrm{~B}-\mathrm{NH}_{3}$ |  |  |  |  | -82.961 72 |
| $\mathrm{H}_{3} \mathrm{~B}-\mathrm{PH}_{3}$ |  |  |  |  | -369.148 15 |
| $\mathrm{H}_{3} \mathrm{Al}-\mathrm{NH}_{3}$ |  |  |  |  | -300.163 07 |
| $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ |  |  |  |  | -586.339 75 |

TABLE 3: Activation Energies and Heats of Reactions ( $\Delta H$ ) for $\mathrm{H}_{\mathbf{2}}+\mathrm{H}_{\mathbf{2}} \mathrm{X}=\mathrm{YH}_{\mathbf{2}}$ Reactions (kcal/mol)

| (X,Y) | sym | activation energy |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { CAS } \\ & (6,6) \end{aligned}$ | $\begin{gathered} \text { MP2/CAS } \\ (6,6) \end{gathered}$ | $\begin{aligned} & \text { CAS } \\ & (4,4) \end{aligned}$ | $\begin{gathered} \text { MP2/CAS } \\ (4,4) \end{gathered}$ | $\begin{aligned} & \text { MP4/ } \\ & \text { MP2 } \end{aligned}$ | $\frac{\Delta H}{\mathrm{MP} 4 / \mathrm{MP} 2}$ |
| (C,C) | $C_{2 v}$ | 109.6 | 117.2 | 107.1 | 110.1 |  | -41.3 |
|  | $C_{\text {s }}$ | 100.5 | 100.0 | 99.4 | 94.8 | 90.4 | -41.4 |
| (Si,Si) | $C_{2 v}$ | 54.4 | 60.1 | 54.7 | 55.0 |  | -50.2 |
|  | $C_{\text {s }}$ | 51.6 | 46.9 | 53.7 | 42.2 | 39.6 | -50.2 |
|  | $C_{1}$ | 51.5 | 46.9 | 53.3 | 38.1 | 39.5 | -50.2 |
| (Si,C) | $C_{\text {s }}$ | 59.2 | 53.7 | 58.6 | 50.7 | 49.6 | -56.9 |
| $(\mathrm{B}, \mathrm{N})$ | $C_{\text {s }}$ | 57.3 | 48.2 | 56.8 | 43.8 | 43.0 | -0.2 |
| (B,P) | $C_{\text {s }}$ | 33.8 | 34.7 | 28.2 | 19.8 | 17.7 | -17.5 |
|  | $C_{1}$ | 32.9 | 29.7 |  |  |  | -17.5 |
| ( $\mathrm{Al}, \mathrm{N}$ ) | $C_{\text {s }}$ | 33.6 | 26.1 | 24.2 | 29.5 | 24.4 | -12.5 |
| (Al, P) | $C_{\text {s }}$ | 39.2 | 41.5 | 38.7 | 31.5 | 32.7 | -7.0 |

on the $C_{s}$ symmetry path for $\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$ are different from that on the $C_{2 v}$ symmetry path.

To study the reason for the difference of reaction mechanisms between ethylene and disilene systems with $C_{s}$ symmetry, the triplet excitation, $\pi \rightarrow \pi^{*}$, energies and the $\pi$ orbital polarization energies for ethylene and disilene were calculated by the MP4/ 6-31G(d,p)//MP2 level. For the triplet excitation energies, the three models with $C_{2 v}, C_{s}$, and $C_{1}$ symmetries were calculated on the basis of the symmetry path from the above results. Namely the geometries of the models for the triplet state were optimized under the restriction of each symmetry ( $C_{2 v}, C_{s}$, and $C_{1}$ ). The triplet excitation energies were obtained from the energy difference between the ground state and the above model geometries. Accordingly, the obtained energies are adiabatic triplet excitation energies under the restriction of each symmetry ( $C_{2 v}, C_{s}$, and $C_{1}$ ). On the other hand, the calculations for the orbital polarization energies used the following model.


TABLE 4: CI Coefficients of LMO-CI Analyses along the IRC Path for $\mathrm{H}_{\mathbf{2}}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{\mathbf{2}}$ with $C_{2 v}$ Symmetry

|  |  |  |  |  |  |  |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| no. | config | $\mathrm{RX}=$ | $\mathrm{RX}=$ |  | $\mathrm{RX}=$ | $\mathrm{RX}=$ |
| 1 | $\mid 2200>$ | -0.003 | -0.011 | -0.076 | -0.133 | -0.152 |
| 2 | $\mid 2101>$ | -0.023 | -0.050 | -0.225 | -0.326 | -0.332 |
| 3 | $\mid 1201>$ | -0.014 | -0.023 | -0.020 | 0.007 | 0.015 |
| 4 | $\mid 2002>$ | 0.162 | 0.138 | -0.012 | -0.150 | -0.179 |
| 5 | $\mid 1102>$ | 0.274 | 0.265 | 0.176 | 0.051 | 0.036 |
| 6 | $\mid 0202>$ | 0.146 | 0.125 | 0.066 | 0.010 | 0.003 |
| 7 | $\mid 2110>$ | 0.014 | 0.023 | 0.020 | -0.007 | -0.015 |
| 8 | $\mid 1210>$ | 0.023 | 0.050 | 0.225 | 0.326 | 0.332 |
| 9 | $\mid 1111>$ | 0.012 | 0.050 | 0.412 | 0.598 | 0.571 |
| 10 | $\mid 2011>$ | 0.383 | 0.362 | 0.227 | 0.041 | 0.005 |
| 11 | $\mid 1111>$ | 0.677 | 0.716 | 0.671 | 0.396 | 0.342 |
| 12 | $\mid 0211>$ | 0.383 | 0.362 | 0.227 | 0.041 | 0.005 |
| 13 | $\mid 1012>$ | 0.026 | 0.054 | 0.215 | 0.306 | 0.333 |
| 14 | $\mid 0112>$ | 0.015 | 0.020 | 0.022 | -0.001 | -0.013 |
| 15 | $\mid 2020>$ | 0.146 | 0.125 | 0.066 | 0.010 | 0.003 |
| 16 | $\mid 1120>$ | 0.274 | 0.265 | 0.176 | 0.051 | 0.036 |
| 17 | $\mid 0220>$ | 0.162 | 0.138 | -0.012 | -0.150 | -0.179 |
| 18 | $\mid 1021>$ | -0.015 | -0.020 | -0.022 | 0.001 | 0.013 |
| 19 | $\mid 0121>$ | -0.026 | -0.054 | -0.215 | -0.306 | -0.333 |
| 20 | $\mid 0022>$ | -0.004 | -0.012 | -0.068 | -0.119 | -0.155 |

The model was assumed to have $C_{s}$ symmetry, and the geometry was optimized. The orbital polarization energy was obtained from the energy difference between the ground state and the model geometries. These calculated energies are listed in Table 8. The absolute values of the calculated triplet excitation and the calculated orbital polarization energies cannot be compared directly because these models are very rough for both the transition state and each energy (triplet excitation and orbital polarization energies). However, we think these values can be used as a qualitative comparison for the classification of reaction mechanisms. From the above results by the CI/LMO/CAS analysis, the reactions for ethylene and disilene on the $C_{2 v}$ and $C_{s}$ symmetry paths were classified into the concerted and polarized mechanisms. We assumed here that the transition state (energy barrier height) for the conserted mechanism relates to

TABLE 5: CI Coefficients of LMO-CI Analysis along the IRC Path for the $\mathbf{H}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \mathrm{C}=\mathrm{CH}_{\mathbf{2}}$ Reaction with $\boldsymbol{C}_{s}$ Symmetry

|  |  | $\mathrm{RX}=$ |  | $\mathrm{RX}=$ |  |  |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| no. | config | -1.0 | -0.5 | $\mathrm{TS}(0.0)$ | 0.5 | 1.0 |
| 1 | $\mid 2200>$ | 0.046 | -0.077 | -0.120 | -0.140 | -0.152 |
| 2 | $\mid 2101>$ | -0.082 | 0.019 | -0.110 | -0.226 | -0.286 |
| 3 | $\mid 1201>$ | -0.134 | 0.157 | 0.166 | 0.135 | 0.093 |
| 4 | $\mid 2002>$ | 0.037 | -0.002 | -0.061 | -0.075 | -0.133 |
| 5 | $\mid 1102>$ | 0.136 | -0.029 | 0.091 | 0.135 | 0.112 |
| 6 | $\mid 0202>$ | 0.133 | -0.108 | -0.072 | -0.039 | -0.016 |
| 7 | $\mid 2110>$ | -0.303 | 0.339 | 0.287 | 0.152 | 0.064 |
| 8 | $\mid 1210>$ | -0.200 | 0.234 | 0.292 | 0.323 | 0.329 |
| 9 | $\mid 1111>$ | -0.372 | 0.511 | 0.589 | 0.586 | 0.559 |
| 10 | $\mid 2011>$ | 0.184 | -0.059 | 0.056 | 0.084 | 0.056 |
| 11 | $\mid 1111>$ | 0.520 | -0.383 | -0.125 | 0.155 | 0.276 |
| 12 | $\mid 0211>$ | 0.311 | -0.276 | -0.237 | -0.174 | -0.105 |
| 13 | $\mid 1012>$ | 0.121 | -0.047 | 0.091 | 0.222 | 0.299 |
| 14 | $\mid 0112>$ | 0.325 | -0.372 | -0.335 | -0.232 | -0.135 |
| 15 | $\mid 2020>$ | 0.129 | -0.096 | -0.061 | -0.022 | -0.004 |
| 16 | $\mid 1120>$ | 0.260 | -0.248 | -0.230 | -0.141 | -0.058 |
| 17 | $\mid 0220>$ | 0.124 | -0.132 | -0.169 | -0.201 | -0.206 |
| 18 | $\mid 1021>$ | 0.123 | -0.135 | -0.147 | -0.108 | -0.056 |
| 19 | $\mid 0121>$ | 0.168 | -0.222 | -0.317 | -0.386 | -0.386 |
| 20 | $\mid 0022>$ | 0.038 | -0.065 | -0.120 | -0.168 | -0.189 |

TABLE 6: CI Coefficients of LMO-CI Analysis along the IRC Path for the $\mathbf{H}_{\mathbf{2}}+\mathbf{H}_{2} \mathrm{Si}=\mathrm{SiH}_{\mathbf{2}}$ Reaction with $\boldsymbol{C}_{2 v}$ Symmetry

| no. | config | $\mathrm{RX}=-0.5$ | $\mathrm{TS}(0.0)$ | $\mathrm{RX}=0.5$ |
| ---: | :--- | :---: | :---: | :---: |
| 1 | $\mid 2200>$ | -0.039 | -0.105 | -0.190 |
| 2 | $\mid 2101>$ | -0.138 | -0.259 | -0.373 |
| 3 | $\mid 1201>$ | -0.107 | -0.155 | -0.114 |
| 4 | $\mid 2002>$ | -0.027 | -0.112 | -0.173 |
| 5 | $\mid 1102>$ | -0.011 | -0.092 | -0.090 |
| 6 | $\mid 0202>$ | 0.006 | -0.018 | -0.010 |
| 7 | $\mid 2110>$ | 0.107 | 0.155 | 0.114 |
| 8 | $\mid 1210>$ | 0.138 | 0.259 | 0.373 |
| 9 | $\mid 1111>$ | 0.091 | 0.247 | 0.487 |
| 10 | $\mid 2011>$ | 0.417 | 0.332 | 0.150 |
| 11 | $\mid 1111>$ | 0.743 | 0.643 | 0.416 |
| 12 | $\mid 0211>$ | 0.417 | 0.332 | 0.150 |
| 13 | $\mid 1012>$ | 0.090 | 0.153 | 0.233 |
| 14 | $\mid 0112>$ | 0.070 | 0.101 | 0.088 |
| 15 | $\mid 2020>$ | 0.006 | -0.018 | -0.010 |
| 16 | $\mid 1120>$ | -0.011 | -0.092 | -0.090 |
| 17 | $\mid 0220>$ | -0.027 | -0.112 | -0.173 |
| 18 | $\mid 1021>$ | -0.070 | -0.101 | -0.088 |
| 19 | $\mid 0121>$ | -0.090 | -0.153 | -0.233 |
| 20 | $\mid 0022>$ | -0.011 | -0.025 | -0.063 |

the triplet excitation energies (the electron spin exchange from singlet to triplet) for each spaces $\left(\mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}\right)$ and the transition state for the polarized mechanism relates to the orbital polarization energy on the basis of the model as shown in the above figure for each space.

From the assumed transition state models, reaction systems in Scheme 1 were also studied. For ethylene, the calculated triplet excitation energies for $C_{2 v}$ and $C_{s}$ symmetries are almost the same (the difference: $3 \%$ ). This fact corresponds to the small difference $(9 \%$ by the $\operatorname{CAS}(6,6)$ method) in activation energies on the $C_{2 v}$ and $C_{s}$ reaction paths. On the $C_{2 v}$ symmetry path, the activation energy of disilene is about $50 \%$ of that for ethylene. This can be explained from the triplet excitation energies of ethylene and disilene with $C_{2 v}$ symmetry. Namely, the triplet excitation energy of disilene with $C_{2 v}$ symmetry is about $54 \%$ of that of ethylene. Next, we would like to explain the mechanisms (concerted and polarized) for ethylene and disilene on the $C_{s}$ symmetry paths. The calculated orbital polarization energy for ethylene is over $60 \%$ of the triplet excitation energy with $C_{s}$ symmetry. On the other hand, the calculated orbital polarization energy for disilene is under 30\%

TABLE 7: CI Coefficients of LMO-CI Analysis along the IRC Path for the $\mathbf{H}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \mathbf{S i}=\mathrm{SiH}_{\mathbf{2}}$ Reaction with $\boldsymbol{C}_{s}$ Symmetry

| no. | config | RX $=-0.5$ | TS $(0.0)$ | RX $=0.5$ |
| ---: | :--- | :---: | ---: | ---: |
| 1 | $\mid 2200>$ | 0.066 | 0.110 | -0.207 |
| 2 | $\mid 2101>$ | 0.014 | -0.098 | 0.264 |
| 3 | $\mid 1201>$ | -0.055 | 0.046 | -0.027 |
| 4 | $\mid 2002>$ | -0.006 | 0.025 | -0.105 |
| 5 | $\mid 1102>$ | -0.006 | -0.024 | 0.024 |
| 6 | $\mid 0202>$ | 0.018 | 0.006 | 0.000 |
| 7 | $\mid 2110>$ | -0.256 | 0.296 | -0.251 |
| 8 | $\mid 1210>$ | -0.249 | 0.330 | -0.444 |
| 9 | $\mid 1111>$ | -0.204 | -0.327 | 0.498 |
| 10 | $\mid 2011>$ | -0.039 | -0.154 | 0.166 |
| 11 | $\mid 1111>$ | 0.088 | -0.077 | 0.261 |
| 12 | $\mid 0211>$ | 0.131 | 0.080 | -0.018 |
| 13 | $\mid 1012>$ | 0.008 | 0.091 | -0.221 |
| 14 | $\mid 0112>$ | 0.069 | -0.046 | 0.017 |
| 15 | $\mid 2020>$ | 0.324 | 0.204 | -0.052 |
| 16 | $\mid 1120>$ | 0.609 | 0.503 | -0.228 |
| 17 | $\mid 0220>$ | 0.357 | 0.342 | -0.237 |
| 18 | $\mid 1021>$ | 0.301 | -0.296 | 0.146 |
| 19 | $\mid 0121>$ | 0.308 | -0.342 | 0.281 |
| 20 | $\mid 0022>$ | 0.054 | 0.093 | -0.104 |

TABLE 8: Triplet Excitation Energies and Orbital Polarization Energies for $\mathbf{H}_{2} \mathbf{X}=\mathbf{Y H}_{\mathbf{2}}$ Molecule by MP4/ 6-31G(d,p)/MP2 Level (kcal/mol)

|  | triplet excitation |  |  |  |
| :--- | :--- | ---: | ---: | :---: |
|  | $C_{2 v}$ |  | $C_{\mathrm{s}}$ | $C_{1}$ |

## SCHEME 1


of the triplet excitation energy with $C_{s}$ symmetry. Namely, the selection between the concerted mechanism or the polarized mechanism depends on whether the influence of the triplet excitation energy is dominant or whether the orbital polarization energy is dominant, and therefore selection between the mechanisms will somehow depend on the balance between these effects or perhaps by the ratio of one to the other. Hence, the reaction of the ethylene system occurs through the concerted mechanism for both $C_{2 v}$ and $C_{s}$ symmetry paths. The reaction of the disilene system occurs through the concerted mechanism for the $C_{2 v}$ symmetry path and through the polarized mechanism for the $C_{s}$ symmetry path. As this is stated here, it would seem that one could have the triplet excitation energy controlling the

TABLE 9: CI Coefficents of LMO-CI Analysis at the Transition States for $\mathbf{H}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \mathrm{X}=\mathbf{Y H}_{\mathbf{2}}$ Reactions

| no. | config | $\mathrm{SiC}\left(C_{s}\right)$ | $\mathrm{BN}\left(C_{s}\right)$ | $\mathrm{BP}\left(C_{s}\right)$ | $\mathrm{AlN}\left(C_{s}\right)$ | $\mathrm{AlP}\left(C_{s}\right)$ |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| 1 | $\mid 2200>$ | 0.110 | 0.096 | 0.182 | -0.100 | 0.158 |
| 2 | $\mid 2101>$ | -0.007 | 0.112 | 0.224 | 0.096 | 0.177 |
| 3 | $\mid 1201>$ | -0.141 | -0.054 | -0.008 | -0.072 | 0.004 |
| 4 | $\mid 2002>$ | -0.004 | 0.044 | 0.090 | -0.030 | 0.064 |
| 5 | $\mid 1102>$ | 0.013 | -0.046 | -0.011 | 0.051 | 0.003 |
| 6 | $\mid 0202>$ | 0.068 | 0.011 | -0.004 | -0.022 | -0.003 |
| 7 | $\mid 2110>$ | -0.352 | -0.189 | 0.351 | 0.179 | -0.358 |
| 8 | $\mid 1210>$ | -0.394 | -0.337 | 0.380 | 0.370 | -0.402 |
| 9 | $\mid 1111>$ | -0.350 | -0.425 | 0.370 | -0.410 | -0.340 |
| 10 | $\mid 2011>$ | 0.009 | -0.115 | 0.223 | -0.089 | -0.218 |
| 11 | $\mid 1111>$ | 0.246 | -0.152 | 0.209 | -0.128 | -0.227 |
| 12 | $\mid 0211>$ | 0.279 | 0.119 | -0.010 | 0.176 | -0.022 |
| 13 | $\mid 1012>$ | 0.022 | -0.198 | 0.155 | 0.159 | -0.129 |
| 14 | $\mid 0112>$ | 0.166 | 0.119 | -0.003 | -0.152 | -0.019 |
| 15 | $\mid 2020>$ | 0.170 | 0.064 | 0.164 | -0.051 | 0.154 |
| 16 | $\mid 1120>$ | 0.425 | 0.269 | 0.405 | -0.261 | 0.429 |
| 17 | $\mid 0220>$ | 0.298 | 0.348 | 0.267 | -0.383 | 0.309 |
| 18 | $\mid 1021>$ | 0.189 | 0.191 | 0.225 | 0.157 | 0.213 |
| 19 | $\mid 0121>$ | 0.243 | 0.495 | 0.261 | 0.493 | 0.256 |
| 20 | $\mid 0022>$ | 0.056 | 0.242 | 0.079 | 0.212 | 0.057 |

concerted mechanism while the orbital polarization energy is controlling the polarized mechanism.
B. $\mathbf{H}_{\mathbf{2}} \mathbf{X}=\mathbf{Y H}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \rightarrow \mathbf{H}_{\mathbf{3}} \mathbf{X}-\mathbf{Y H}_{3}$. The reactions for five asymmetric systems $\left(\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}\right.$ : X not equal to Y , $(\mathrm{X}, \mathrm{Y})$ $=(\mathrm{Si}, \mathrm{C}),(\mathrm{B}, \mathrm{N}),(\mathrm{B}, \mathrm{P}),(\mathrm{Al}, \mathrm{N})$, and $(\mathrm{Al}, \mathrm{P}))$ were treated. The transition states for these reactions have $C_{s}$ symmetry, except for the ( $\mathrm{B}, \mathrm{P}$ ) system by the $\operatorname{CAS}(6,6) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ method. These reactions were analyzed by the CI/LMO/CAS methods. The relative weights of the electronic configurations at the transition states for these systems are summarized in Table 9. The calculated results for these systems are similar to that of the disilene system with $C_{s}$ symmetry. Namely, the weights of configurations 16 and 17 are large for all systems. The configurations 16 and 17 mean the polarization of the $\pi$ bond of $\mathrm{X}=\mathrm{Y}$ and the polarization of the $\pi$ bond of $\mathrm{X}=\mathrm{Y}$ and the $\sigma$ bond of the active hydrogen, respectively. Thus, these reactions occur through the polarized mechanism.

Consider the relationship between the activation energy barrier heights for these systems and the triplet excitation or the orbital polarization energies for $\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}$ molecules. The activation energy barrier for the reaction $\mathrm{H}_{2} \mathrm{Si}=\mathrm{CH}_{2}+\mathrm{H}_{2}$ is about $8 \mathrm{kcal} /$ mol larger than that for the reaction $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}+\mathrm{H}_{2}$ on the $C_{s}$ pathway by the $\operatorname{CAS}(6,6) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ method. The calculated orbital polarization energy of $\mathrm{H}_{2} \mathrm{Si}=\mathrm{CH}_{2}$ is about $26 \mathrm{kcal} / \mathrm{mol}$ larger than that of $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$. Hence the order relationship of the activation energies for both reactions corresponds with that of their calculated orbital polarization energies. On the other hand, the triplet excitation energy for $\mathrm{H}_{2} \mathrm{Si}=\mathrm{CH}_{2}$ is about 54 $\mathrm{kcal} / \mathrm{mol}$ less than that of $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$. This relationship is the opposite of that for their activation energies. That is to say, the reaction of the $\mathrm{H}_{2} \mathrm{Si}=\mathrm{CH}_{2}$ system occurs through the polarized mechanism as shown in the results of the CI/LMO/ CAS analysis. The activation energy barrier height for the reaction $\mathrm{H}_{2} \mathrm{~B}=\mathrm{NH}_{2}+\mathrm{H}_{2}$ is similar to those for the $(\mathrm{Si}, \mathrm{Si})$ and ( $\mathrm{Si}, \mathrm{C}$ ) systems with $C_{s}$ symmetry: the barrier height for the $(\mathrm{B}, \mathrm{N})$ system is in the middle of those for the $(\mathrm{Si}, \mathrm{Si})$ and $(\mathrm{Si}, \mathrm{C})$ systems. The orbital polarization energy of $\mathrm{H}_{2} \mathrm{~B}=\mathrm{NH}_{2}$ is also in the middle of those of the $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$ and $\mathrm{H}_{2} \mathrm{Si}=\mathrm{CH}_{2}$ molecules. However the triplet excitation energy for $\mathrm{H}_{2} \mathrm{~B}=\mathrm{NH}_{2}$ is very large as compared with the triplet excitation energies for $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$ and $\mathrm{H}_{2} \mathrm{Si}=\mathrm{CH}_{2}$. The reaction $\mathrm{H}_{2} \mathrm{~B}=\mathrm{PH}_{2}+\mathrm{H}_{2}$ does not lead to the product $\mathrm{H}_{3} \mathrm{~B}-\mathrm{PH}_{3}$; it leads to $\mathrm{BH}_{3}--\mathrm{H}_{3} \mathrm{P}$ weak complex as shown in a previous paper. ${ }^{17}$ The activation energy barrier for the $(\mathrm{Al}, \mathrm{N})$ system is about $20 \mathrm{kcal} / \mathrm{mol}$ lower than those for the ( $\mathrm{Si}, \mathrm{C}$ ) and ( $\mathrm{B}, \mathrm{N}$ ) systems. The orbital
polarization energy of the $\mathrm{H}_{2} \mathrm{Al}=\mathrm{NH}_{2}$ molecule is also about $20 \mathrm{kcal} / \mathrm{mol}$ smaller than that of $\mathrm{H}_{2} \mathrm{~B}=\mathrm{NH}_{2}$. The activation energy barrier for the ( $\mathrm{Al}, \mathrm{P}$ ) system is about $20 \mathrm{kcal} / \mathrm{mol}$ lower than those for the ( $\mathrm{Si}, \mathrm{C}$ ) and ( $\mathrm{B}, \mathrm{N}$ ) systems by the CAS $(6,6)$ level. The orbital polarization energy of $\mathrm{H}_{2} \mathrm{Al}=\mathrm{PH}_{2}$ is about $30 \mathrm{kcal} / \mathrm{mol}$ smaller than that of $\mathrm{H}_{2} \mathrm{~B}=\mathrm{NH}_{2}$. In comparison with the $(\mathrm{Al}, \mathrm{N})$ and $(\mathrm{Al}, \mathrm{P})$ systems, the order relationship of these activation energies does not correspond to that of their orbital polarization energies. In the reaction of the ( $\mathrm{Al}, \mathrm{P}$ ) system, it is considered that the bond-breaking mechanism of the $\mathrm{H}_{2}$ molecule becomes critical because of the small electron negativity of the phosphorus atom. Thus, the activation energy barrier heights for the above treated systems correlate closely with the orbital polarization energies of their $\pi$ bonds. While the orbital polarization energy calculated here is a very rough approximation for the index of the polarized mechanisms, it is useful to estimate the qualitative reactivity.

Before concluding this section, we should note the relation between the reaction mechanisms (concerted and polarized) and the geometries of the transition states as shown in Table 1. For the reactions of ethylene and disilene, the transition states with $C_{2 v}$ symmetry are earlier than those with $C_{s}$ symmetry because the $\mathrm{H}^{*}-\mathrm{H}^{*}$ bond length for the $C_{2 v}$ symmetry transition states are longer than those for the $C_{s}$ symmetry transition states. Similarly, this relation can be seen for the $\mathrm{H}^{*}-\mathrm{X}$ bond length in comparison with the transition states and the products. For the $C_{2 v}$ symmetry transition states, the $\mathrm{H}^{*}-\mathrm{X}$ bond length for the reactions of ethylene and disilene are $61 \%$ and $42 \%$ longer than those of the products, respectively. The $\mathrm{H}^{*}-\mathrm{X}$ bond length for the $C_{s}$ symmetry transition states of ethylene and disilene are longer by $37 \%$ and $15 \%$ than those of the products, respectively. For other systems, the differences in the $\mathrm{H}^{*}-\mathrm{X}$ bond length between the transition states and their products are about under $22 \%$ ((Si,C) $22 \%$, (B,N) $15 \%$, (B,P) $7 \%$, (Al,N) $-11 \%$, and (Al,P) $9 \%$ ). From these facts, we suppose that the concerted transition state is earlier than the polarized transition state.

For the experimental energy barriers, we do not know the activation energies for the treated reactions. The energy barrier for $\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{~B}=\mathrm{NH}_{2}+\mathrm{H}_{2}+\mathrm{BH}_{3}$ was found to be $5.6 \mathrm{kcal} / \mathrm{mol}$ by infrared matrix isolation. ${ }^{18}$ However, we have showed ${ }^{19}$ that the reaction does not occur through the 1,2 hydrogen elimination mechanism.

## IV. Conclusions

The reaction mechanisms of 1,2-hydrogen addition into $\pi$ bonds of $\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}$ molecules were studied by ab initio MO methods. For $\mathrm{X}=\mathrm{Y}$ systems (ethylene and disilene), there are two types of reaction pathways from the orbital symmetry rules. One is the least-motion pathway with $C_{2 v}$ symmetry, which is symmetry forbidden. The other is the reduced symmetry pathway with $C_{s}$ or $C_{1}$ symmetry, which is symmetry allowed. For ethylene and disilene systems, the least-motion and the reduced symmetry pathways were calculated. The transition states on the least-motion pathways for both systems are not true transition states. The difference between the activation energy heights on the least-motion and on the reduced symmetry paths was $17 \%$ for ethylene system and $22 \%$ for disilene system in comparison with their activation energy heights on the least motion path by the MP2/CAS $(6,6)$ level.

The CI/LMO/CAS analysis showed the following results. The reactions on the least-motion pathway for both ethylene and disilene systems occur through the concerted mechanism. While the reactions on the reduced symmetry paths ( $C_{s}$ or $C_{1}$ symmetry) for the ethylene system occur also through the
concerted mechanism, the reaction for disilene occurs through the polarized mechanism. The reactions for five asymmetric systems $\left(\mathrm{H}+\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}:(\mathrm{X}, \mathrm{Y})=(\mathrm{Si}, \mathrm{C}),(\mathrm{B}, \mathrm{N}),(\mathrm{B}, \mathrm{P}),(\mathrm{Al}, \mathrm{N})\right.$, and ( $\mathrm{Al}, \mathrm{P}$ )) occur also through the polarized mechanism. These two types of reaction mechanisms were explained on the basis of the $\pi \rightarrow \pi^{*}$ triplet excitation energies and the $\pi$ bond polarization energies for $\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}$ molecules. Therefore, 1,2hydrogen addition into $\mathrm{H}_{2} \mathrm{X}=\mathrm{YH}_{2}$ was classified into the concerted mechanism and polarized mechanism.

Acknowledgment. The present research is supported by a Grant-in-Aid for Scientific Research on Priority Area "Theory of Chemical Reactions" from the Ministry of Education, Science and Culture. The computer time was made available by the Computer Center of the Institute for Molecular Science and by the Information Systems Engineering Department of Osaka Sangyo University with its CONVEX C240 minisupercomputer.

## References and Notes

(1) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry; Verlag Chemie: Weinheim, Germany, 1970.
(2) Gordon, M. S.; Truong, T. N.; Pople, J. A. Chem. Phys. Lett. 1986, 130, 245.
(3) Siria, J. C.; Duran, M.; Liedos, A.; Bertran, J. J. Am. Chem. Soc. 1987, 109, 7623.
(4) Gordon, M. S.; Truong, T. N.; Bonderson, E. K. J. Am. Chem. Soc. 1986, 108, 1425.
(5) Haviharan, P. C.; Pople, J. A. Theor. Chim. Acta. 1973, 28, 213. Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163.
(6) Komornicki, A.; Ishida, K.; Morokuma, K.; Ditchfield, R.; Conrad, M. Chem. Phys. Lett. 1994, 45, 595.
(7) Roos, B. In Advances in Chemical Physics; Lawley, K. P., Ed.; Wiley: New York, 1987; Vol. 69, Part II, p 399.
(8) Pople, J. A.; Seeger, R.; Krishnan, R. Int. J. Quantum Chem. 1979, s11, 149.
(9) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem. 1975, 9, 229. Pople, J. A.; Krishnan, R.; Schegel, H. B.; Binkley, J. S. Int. J. Quantum Chem. 1975, s13, 225.
(10) McDouall, J. J.; Peasley, K.; Robb, M. A. Chem. Phys. Lett. 1988, 148, 183.
(11) Fukui, K. J. Phys. Chem. 1970, 74, 4161. Ishida, K.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153.
(12) Cundari, T. R.; Gordon, M. S. J. Am. Chem. Soc. 1991, 113, 5231.
(13) Sakai, S. submitted for publication.
(14) Foster, J. M.; Boys, S. F. Rev. Mod. Phys. 1960, 32, 296, 300.
(15) Schmidt, M. W.; Buldridge, K. K.; Boatz, J. A.; Jensen, J. H.; Koseki, S.; Gordon, M. S.; Nguyen, K. A.; Windus, T. L.; Elbert, S. T. QCPE Bull. 1990, 10, 52.
(16) Frisch, K. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cislowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Comperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; DeFrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A., GAUSSIAN94; Gaussian, Inc.: Pittsburgh, PA, 1995.
(17) Sakai, S. J. Phys. Chem. 1995, 99, 9080.
(18) Carpenter, J. D.; Ault, B. S. Chem. Phys. Lett. 1992, 197, 171.
(19) Sakai, S. J. Phys. Chem. 1995, 99, 5883.


[^0]:    ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, January 1, 1997.

